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INTRODUCTION

Dendritic crystal growth has been a subject of interest

to physicists, metallurgists as well as mathematicians.
The most common example of such a growth is the

well-known ice-crystal. From a physicist's perspective,
dendrites constitute a relatively simple but important where

problem of pattern formation in non-equilibrium growth

[3-5]. In metallurgy, dendrites are common to crystal

formation in the manufacture of alloy when the growth
rate exceeds some critical value. The literature on the

subject is vast and reviewed in [3-6], as well as in our

paper [ 1]. Here, we report a summary of the contents of

our recent paper [2]; the reader is referred to it for more
details, where

APPROACH

In the first of a sequence of papers on dendritic crystal

growth for weak undercooling [1], we derived asymp-

totic equations for weak nondimensional undercooling

,5 (non-dimensionalized appropriately, through a com-

bination of latent and specific heat) for a dendrite that

was asymptotically a parabola in the far-field. A Peclet
number, P was introduced in accordance to

which is clearly small for small A. Based on the length

scale ,, associated with the far-field parabola, a velocity
scale l" = 2 D P ,/c_ was identified, where D is the

diffusion constant. , and a/t' are used to nondimen-

sionalize all lengths and times. We determined that if

the initial deviations from an lvantsov state (parabolic

dendrite with a corresponding temperature profile) are

limited to an O( 1) region near the tip, then the dynamic
evolution of the dendrite for the nondimensional time

t << p-1 involves the O(1) tip region only; in that re-

gion, the temperature is harmonic to the leading order,

with appropriate boundary and far-field matching condi-
tions. It is to be noted that the derivation does not assume

that the deviation from the Ivantsov state is small; only

that it does not extend all the way to the far-field O( P- t )

region. This tip-region dynamics was recast in terms of

the evolution of the conformal mapping function from
an upper-half¢ plane (( = ( + i0) to the exterior of the

dendrite in the :-plane, where : = :v + iv (See Fig. 1).
This function :((, t) was shown to satisfy the following

nonlinear integro-differential equation for real ¢ (i.e. on

(-axis):

z, = (H + iR):_, (2)

-H((.t) = "H{R}((. t)

I - B hn w,_
n(,_,¢) - i:_1_ , (a)

1 f+_ ct_' c'r_,, .... ('_----_R(_ ,t),
(4)
(5),_,(£.t) = hl,L t) + i _t {li]((. t),

l((_,t) = (1 +of((,t))h((,t), {6)

t,((,t) = ___1 Im --Z_ , (71

f((,t) = 1-co.s-I(O-Oo) = 1 - t_, -i40o . (8)

In the above, the nondimensional surface energy param-

eter t-_is given by

'2 a L P (9)

where _1ois the capillary length, % the specific heat, T._r

the melting temperature of a planar interface, and L the

latent heat. Further, in the above, _,-is physically the non-

dimensional curvature and t + o f is a four-fold surface

energy anisotropy correction. Here _ the angle between

the normal to the interface (pointing towards the melt)
and the v axis, while 0o is some fixed value denoting a

direction along which surface energy is a minimum.

Through a linearization of the equation for :((. t)

about some generally arbitrarily time dependent state,
we were able to determine expression for growth rate

of an initially localized disturbance in terms of the base

state, through a Fourier-analysis, when the disturbance

is far from the tip. In the special case of a base state that

is steady and is close to an Ivantsov state, the expressions

for the growth rate were in accordance to prior results

[7]. Interestingly enough, it was possible to obtain the

same results by analytically continuing the equations

(2)-(8) to the lower-half complex ( plane and carrying
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out an asymptotic analysis for the linearized equations

near singularities of _¢.
It is to be noted that while the lower-half ( plane does

not correspond to any part of the physical domain, sin-

gularities of s ((, t) approaching the real axis from below
correspond to interfacial distortions. In particular, we

found that according to the linearized dynamics, surface

energy prevents an initially localized disturbance from

remaining localized beyond a certain time. Arbitrarily

small initial interfacial distortions (noise), representable

by some singularity distribution in hn ( < 0, signifi-

cantly affect the interface later in time when singularities

of the associated zero-surface-energy problem approach

or cross lm( = 0, even though surface energy locally

smooths out all singularities in the linearized dynamics.

The extent to which the zero-surface-energy singularity

dynamics relates to growth rate and dispersion of dis-

turbances for small non-zero surface energy was also

uncovered. Hence, zero-surface-energy singularity dy-

namics have both qualitative and quantitative impact on

the physical predictions mentioned above.
The relation between complex singularity dynamics

and the evolving physical features of a dendrite tran-
scends the restriction posed by linearized dynamics since

a singularity ofthe conformal map in lm ( < 0 can re-
sult in large interfacial distortions when that singularity

approaches lm( = 0. In particular, if we consider an
isolated singularity (,It) of :_ in the lower-half plane so
that

_¢ ~ Eo(t) (¢ - ¢_)-_ (]o)

near ( = C(t), then if the singularity is very close to

the real axis, we can expect a corner pointed towards the

crystal, with included angle ( I - _3) r. This is locally

rounded off over a length scale determined by singu-

larity distance from the real axis. The larger the IEol
(singularity 'strength'), the larger is the impact region
on the interface, ar 9 Eo determines the orientation of

this distortion relative to the v-axis. The physical ef-

fect of an isolated complex singularity corresponding
to ;3 = 1 (pole) is to create parallel sided indentation

with width r E0 and depth that scales as - In _l,, where

q_ = hn (,.

It is to be noted that the geometrical features at the

interface associated with (10), as discussed above, will

remain intact for a period of time, even when the actual

singularity C (t) is smoothed out or replaced by a cluster

of other singularities, provided there is some intermedi-
ate range: Z-__ << I(- (°(t)[ << 1 for some _ and

some set of real _ for which the behavior (10) persists.

Prior work for dendrites [I], as well as by others

on the mathematically analagous Hele-Shaw problem,

shows that the zero-surface-energy dynamics preserves
the form of the singularity - i.e. _3 in (10) remains

invariant with time; only its position ¢_(t) and its strength

Eo(t) evolve (except for a pole where Eo is invariant).
When ;_ < 0, the form (10) is not invariant. Generally

for an initial singularity of that kind,

z¢ _ .4o(t) + Eo(t) ((- (_U)) -_3 (11)

for ( sufficiently close to (,. Such singularity on the real

axis does not introduce discontinuity in slope, except in

non-generic cases- .]o = o just when Ira (_ = 0.

In this exceptional case, the corner is directed towards

the melt, in contrast to ,.3 > o case, when it is directed

towards the crystal.

All singularities, regardless of their type, were shown

to continually approach the real axis with time, though

for ..3 > ½, they do not impinge the real axis in finite
time-indeed they slow down significantly as they come
close to the real axis.

A point where :_ = o, but :_ is otherwise analytic, is

referred to as a zero. A zero on the real axis corresponds

to a zero-angled cusp on the interface that protrudes into
the melt. Prior work, discussed in [1], shows that a

zero remains invariant with time, when surface energy

is neglected, i.e. the form

z¢ '_ -;<c((,o(l),l) ((, -- (0(/)) (12)

remains invariant. The evolution equation for (o(t),

however, is found to be different from that of a singular-

ity C,(t). In particular (0(t) may ormay not approach the
real axis. For some set of initial conditions, a zero does

impact the real axis in finite time. The mathematical

solution ceases to be physically meaningful beyond this

cusp-formation time.

The connection between the dynamics in the ex-

tended domain [., ( _< 0 and the physical features
of an evolving dendrite, as described above, is partic-

ularly useful, since there is strong evidence that the

zero-surface-energy dynamics in the extended domain

is well-posed [See [8]-[9] for evidence for the mathe-

matically similar Hole-Shaw problem], in contrast to the
interracial evolution itself. In the latter case, the do-

main is restricted to [m( = 0. This well-posedness

at the zeroth order mathematically justifies a systematic

perturbation procedure in the extended complex domain
to study how small but nonzero surface energy (with or

without anisotropy) alters the zero-surface-energy dy-

namics. The viewpoint we followed in [1]-[2], follow-

ing the Hele-Shaw analysis with isotropy [9]-[10], is

that the interfacial dynamics comes as a byproduct of

the dynamics in the extended domain.
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Anecessarydrawbacktotheabovementionedproce-
dureisthatnowonemustspecifyinitialconditionsinthe
extendedcomplexdomainITo ¢ _< 0, which obviously

cannot be done in an experiment where only the initial

interface shape, up to some non-zero error, can be con-
trolled. Connection to observed statistical features of an

experiment can be made only by studying the statistics of
an ensemble of complex-plane initial conditions, allow-

ing for every conceivable singularity distribution, and
with each member of the ensemble consistent with the

given initial shape to within experimental error. Clearly,
many different singularity distribution can result in the

same approximate interfacial shape. However, an essen-
tial precursor to such a statistical study is the thorough

description of the dynamics of all possible forms for

singularities in lm( < 0. Once this is clarified, one
can proceed with the statistical study for an ensemble
of initial conditions. That such an approach may be

useful is already demonstrated in [2], where we obtain

dendrite coarsening results based on an ensemble of par-

ticular singularities. However, in general, the analytic
continuation of :(¢,0) into Io_ ( < 0, corresponding

to a general analytic initial shape, can be expected to
contain natural boundaries and perhaps other singulari-
ties that are not isolated. Further, even the class of all

possible forms of isolated singularities is too broad to

study; only a small subset of possible initial conditions
contains the specific classes of isolated singularities and

zeros, as in (10) and (12), are considered. Nonetheless,

such isolated-singularity distributions do correspond to

a range of interracial distortion, when they come close
to the real axis. For that reason, we believe that the sta-

tistical features of the interfacial dynamics within this

limited class of initial conditions are not very different

from what is observed in experiment-with the additional

proviso that a two-dimensional theory is applicable, at
least insofar as scaling predictions.

However, even within the class of possible initial

singularities studied, there are basic mathematical is-
sues concerning the asymptotic matching of inner and

outer regions in the complex plane (as the surface-energy

parameter goes to zero) that remain unresolved. In car-

rying out matching in the neighborhood of a singularity

that is preserved by the zero-surface-energy dynamics, it
is observed that the matching is necessarily sectorial-the
inner solution does not match to the outer solution in ev-

ery direction in the complex plane; it can be matched in
a certain sector only. This is not a surprising result, since

the steady dendrite problem is known to have the same
features. However, unlike the steady problem where

there are well defined global Stokes lines even beyond

the immediate vicinity of an inner-region that determine

local sectors of matching (See [11 ] for instance.), no ba-

sic mathematical principle exists for the time-evolving

flow. Only local Stokes lines, corresponding to local

similarity solutions of the partial differential equations
in the inner region, can be identified. There, we invoke

a matching principle based on one used in the Hele-
Shaw context [9]. The only direct evidence that such a

matching principle is sound is our prior finding, in [1],
that there is consistency between results from a Fourier

analysis in the real domain and a complex singularity ap-

proach involving inner-outer matching for the linearized

problem.

Further mathematical difficulties arise with initial

zeros of :_, since the full investigation of the dynamics

at different stages is hampered by lack, in many cases,

of either analytical or numerical solutions to a set of

complicated partial differential equations in the com-

plex plane. It is to be noted that the mathematical theory

of nonlinear higher order partial differential equation

in the complex plane is quite undeveloped. Progress
in this case has been made, as in [8], with additional

ansatz on the dynamics at intermediate stage[s]. There
is no direct evidence that these ansatz are correct by

themselves, though the careful numerical calculations

of the interfaces themselves, for a sequence of compu-

tations for decreasing surface energy, indirectly confirm

the basic features of the analytic theory, both for the

associated isotropic Hele-Shaw problem [ 10], and also

for anisotropic Hele-Shaw and dendrite problems. This

work will be reported in an upcoming paper.

Despite the qualifiers above and the fact that our

method necessarily requires a lengthy investigation of

complex dynamics involving many kinds of initial sin-

gularities with corresponding inner equations depend-

ing on their distance from the real axis as well as the

relative ordering of anisotropy and surface energy, this

technique is the only one known for the fully nonlin-
ear, time-evolving dendrite in the small-surface-energy

limit. This limit is precisely the most difficult to explore

computationally, since resolving small capillary lengths
necessarily strains the capacities of computers. Further,
even for cases where t_ is not small, the small surface

energy limit cannot be avoided at large distances from

the dendrite tip, where the curvature of an essentially

parabolic keeps decreasing.
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ISSUES ADDRESSED

In [2], we continue our study of complex singularities

initiated in [1] by including small but nonzero surface

energy (o < B << 1) in the nonlinear dynamics in the
extended complex domain, generally taking anisotropy

into account. The purpose of this paper is to address,

partly or wholly the following important issues:

1. How does a non-zero B alter singularities described

in (10)? Do the the alterations and modifications

to the singularity stay confined to a small cluster

around (_.(t) ? Is there an intermediate spatial scale

over which the behavior (10) is relevant as B --4 0 ?

If so, is there a limitation on the order of [/5_(0) I and

the time for which this is so such behavior persists?

How does anisotropy in surface energy come into

play?

What are the time and spatial scales over which

surface energy effects become important to the real

axis dynamics for a singularity corresponding to

9 Recall that according to zero-surface-

energy dynamics, such singularities do not impinge

the real axis in finite time, though it continually

approaches it.

For singularities corresponding too < 3 < ¼,

which are known, in the absence of surface energy,

to impact the real axis in finite time (leading to

corners at the interface), what are the relevant space
and time scales associated with a small nonzero B,

when Im (..(t) --4 0

What can be expected about the growth rate of

interfacial distortions associated with approaching

complex singularities discussed above in (1)-(3) ?

How does surface energy dissipation of weak sin-
gularities, determine a cut-off in the growth rate ?

How does anistropy affect the result ? It is often
stated in the literature that interfacial distortions

that point towards the crystal appear to remain sta-

tionary in the laboratory frame. Is there a limitation
on the time scale over which this is true ?

What is the effect of anisotropic surface energy on

an initial zero? Is there a 'daughter singularity'

(,_(t) that emerges from an initial zero (0(0), as

for the isotropic Hele-Shaw problem [8]-[10] ? If

so, how does anisotropy alter the structure of the
cluster of actual singularities of :¢ that are centered

at ¢_(t).

How does the impact of ffa(t) on the real axis affect
the interfacial features? As with isotropic Hele-

Shaw problem, can one expect the daughter singu-

2.

.

4.

5.

.

larity impact time to indicate when an actual in-
terface will veer off from the corresponding zero-

surface energy solution ?

7. How are interfacial cusps, associated with a zero

(o (t) impacting the real axis in finite time, prevented
by small surface energy effects ? One scenario is

that small surface energy becomes important only

when the interface becomes close to a cusp, i.e.

when curvature of the zero-surface-energy solu-

tion becomes large. The second is that the in-
terface never comes close to cusp-formation be-

cause it necessarily veers off from the correspond-

ing zero-surface-energy solution significantly be-

fore any if0(t) can impact the real axis. In the con-
text of complex singularity dynamics of this paper,

the two scenarios are distinguished by the question:

does a daughter singularity (,z(t) necessarily impact

the real axis before the corresponding zero Co(t) ?

8. How does a given disturbance, that may be as-

sociated with many different complex singularity
distributions cause O(1 ) localized deviation in in-

terracial slope from a smooth background state,

evolve in time. Is there a rescaling under which

the equations remain invariant in the small surface

energy limit ? What does such an invariance tell us
about the dynamics ?

9, How do surface energy and anisotropy modify or

confirm the coarsening scenario that we proposed

in [I]? The selection effect of surface energy on

an ensemble of assumed singularities of different

strengths is examined in [2], resulting in a predic-

tion for the coarsening rate of [y{1/__for an interme-

diate range of distances where lul is large compared

to some inverse power of B. There is no necessary
contradiction with the well known ],v[1/_ coarsen-

ing result [12], since that is valid for all sufficiently
large distances from the tip.
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Figure 1: Conformal map from upper-half ( plane Io

the dendri|_' exterior
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